Pangool: Hadoop API made easy | Data story
6

Pangool: Hadoop API made easy

Pangool is an Open Source java library with the aim to be areplacement for the Hadoop API. Hadoop has a steep learning curve. Pangool’s goal is to simplify Hadoop development without losing the performance or flexibility of the low level Hadoop’s API.


Pangool

Pangool is a Tuple MapReduce implementation for Hadoop. By employing an intermediate Tuple-based schema and configuring a Job conveniently, many of the accidental complexities that arise from using the Hadoop Java MapReduce API disappear. Things like secondary sort and reduce-side joins become extremely easy to implement and understand. Pangool’s performance is comparable to that of the Hadoop Java MapReduce API. Pangool also augments Hadoop’s API by making multiple outputs and inputs first-class and allowing configuration via object instance instead of static classes.

 

Features

Tuple instead key/value

By using Tuples instead of (key, value) pairs, the user is not forced to write their custom data types (e.g. Writables) or use external serialization libraries when working with more than two fields.

However Pangool’s Tuples may contain arbitrary data types – as long as they are serializable by Hadoop.

Efficient, easy-to-use secondary sorting

In Pangool you can say:

1 groupBy(“user”, “country”)
2 sortBy(“user”, “country”, “name”)

Pangool will use an intelligent and efficient Partitioner, Sort and Group Comparator underneath just like an advanced user would do with the plain Hadoop MapReduce API.

Efficient, easy-to-use reduce-side joins

Doing reduce-side joins with Pangool is as simple as it can get. By using Tuples and configuring your MapReduce jobs properly, you can easily join various datasets and perform arbitrary business logic on them. Again, Pangool will know how to partition, sort and group by underneath in an efficient way.

Configuration via object instances

Mapper, Combiner, Reducers, Input / Output Formats and Comparators can be passed via object instance. This way, boilerplate configuration code is no longer needed.

First-class multiple inputs / outputs

Multiple inputs & outputs in Pangool is part of its standard API.

Input / Output Tuple formats

Tuples may be persisted and used as input to other Jobs by using TupleOutputFormat / TupleInputFormat.

Performance and flexibility

Pangool is an alternative to the Java Hadoop MapReduce API. The same things can be achieved by using one or another. Pangool’s performance is quite close to that of Hadoop’s MapReduce API. Pangool just makes life easier to those that require the efficiency and flexibility of the plain Java Hadoop MapReduce API.


Pangool performance

Conclusion

Pangool have been developed  with the idea of contributing to the Hadoop community with a tool that reduces the learning curve and therefore eases the adoption of this technology to new users.

Contributors

Eric Palacios
Pere Ferrera
Iván de Prado

More information

The Pangool website

Article Global Facebook Twitter Myspace Friendfeed Technorati del.icio.us Digg Google StumbleUpon Eli Pets

Comments are closed.

Follow LuxNoSQL on Twitter
 
Join the LuxNoSQL Community on LinkedIn